Renal denervation prevents long-term sequelae of ischemic renal injury

نویسندگان

  • Jinu Kim
  • Babu J. Padanilam
چکیده

Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation manifests even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the effect of short ischemic periods on subsequent rat renal ischemic injury

Introduction: Using brief episodes of ischemia and reperfusion (IR) prior to a more sustained IR insult – ischemic preconditioning (IPC) – can reduce IR injury of the heart, brain and many other tissues. The purpose of present study was to investigate the effect of 2min ischemic periods on subsequent rat renal IR injury. Methods: Male rat's renal IR injury was investigated in a right nephrectom...

متن کامل

Evaluating the Recovery Process of Renal Ischemia/Reperfusion Injury in Rats Using Small-Animal SPECT

Background: Renal injuries associated with ischemia/reperfusion are a prevalent clinical phenomenon that can cause the emergence of progressive kidney diseases, eventually leading to chronic kidney injuries. The present study was conducted to evaluate the results obtained from non-invasive imaging using small-animal SPECT and investigate the recovery process in an animal model of renal ischemia...

متن کامل

use of 99m Tc-DMSA scintigraphy in assessment of renal complications of COVID-19

 ABSTRACT COVID-19 mainly affects respiratory and immune systems, but other organs like renal, cardiovascular, lung and nervous systems could also be involved in both acute and chronic settings (1, 2). There is a lot of studies that demonstrate an increasing number of long COVID-19 who continue to experience persistent symptoms weeks or even months after the initial disease. Reports suggest...

متن کامل

Ethanolic extract of Iris songarica rhizome attenuates methotrexate-induced liver and kidney damages in rats

Objective: The long-term sequelae of methotrexate (MTX) remain the major cause of concern for both patients and therapists. Therefore, new approaches to decrease MTX side effects are needed. The study was carried out to evaluate the effects of Iris songarica Schrenk (IS) rhizome extract against MTX-induced hepatic and renal injuries in rats. Materials and...

متن کامل

Orexin-A Improves Hepatic Injury Following Renal Ischemia Reperfusion in Rats

Introduction: Orexins are novel neuropeptides that are localized in neurons in the lateral hypothalamus. They are implicated in a wide variety of physiological functions. Orexin peptides and receptors are found in many peripheral organs such as kidneys. It has been demonstrated that exogenous orexin-A can induce protective effects against ischemia–reperfusion injury in many organs. The goal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2015